Probability Density Estimation Using Advanced Support Vector Machines and the Expectation Maximization Algorithm

نویسندگان

  • Refaat M Mohamed
  • Ayman El-Baz
چکیده

This paper presents a new approach for the probability density function estimation using the Support Vector Machines (SVM) and the Expectation Maximization (EM) algorithms. In the proposed approach, an advanced algorithm for the SVM density estimation which incorporates the Mean Field theory in the learning process is used. Instead of using ad-hoc values for the parameters of the kernel function which is used by the SVM algorithm, the proposed approach uses the EM algorithm for an automatic optimization of the kernel. Experimental evaluation using simulated data set shows encouraging results.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Support Vector Method for Estimating Joint Density of Medical Images

Human learning inspires a large amount of algorithms and techniques to solve problems in image understanding. Supervised learning algorithms based on support vector machines are currently one of the most effective methods in machine learning. A support vector approach is used in this paper to solve a typical problem in image registration, this is, the joint probability density function estimati...

متن کامل

Advanced Character Recognition 6610 Grading: Five Programming Assignments Term Paper Final Examination Syllabus 1. Review: Intro to Ocr (ecse 2610)

ECSE 6610 Advanced Character Recognition. Principles and practice of the recognition of isolated or connected typeset, hand-printed, and cursive characters. Review of optical digitization, supervised and unsupervised estimation of classifier parameters, bias and variance, expectation maximization, the curse of dimensionality. Advanced classification techniques including classifier combinations,...

متن کامل

The Development of Maximum Likelihood Estimation Approaches for Adaptive Estimation of Free Speed and Critical Density in Vehicle Freeways

The performance of many traffic control strategies depends on how much the traffic flow models have been accurately calibrated. One of the most applicable traffic flow model in traffic control and management is LWR or METANET model. Practically, key parameters in LWR model, including free flow speed and critical density, are parameterized using flow and speed measurements gathered by inductive ...

متن کامل

The Use of Stability Principle for Kernel Determination in Relevance Vector Machines

The task of RBF kernel selection in Relevance Vector Machines (RVM) is considered. RVM exploits a probabilistic Bayesian learning framework offering number of advantages to state-of-the-art Support Vector Machines. In particular RVM effectively avoids determination of regularization coefficient C via evidence maximization. In the paper we show that RBF kernel selection in Bayesian framework req...

متن کامل

Discriminative Densities from Maximum Contrast Estimation

We propose a framework for classifier design based on discriminative densities for representation of the differences of the class-conditional distributions in a way that is optimal for classification. The densities are selected from a parametrized set by constrained maximization of some objective function which measures the average (bounded) difference, i.e. the contrast between discriminative ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006